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ABSTRACT

Computer simulation studies of a frequency domain adaptive beamforming

algorithm are presented. These simulation studies were conducted to determine

the multiple broadband target localization capability and the full angular coverage

capability of the algorithm. The algorithm was evaluated at several signal-to-noise

ratios with varying sampling rates. The number of iterations that the adaptive

algorithm took to reach a minimum estimation error was determined. Results of

the simulation studies indicate that the algorithm can localize multiple broadband

targets and has full angular coverage capability.
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I. INTRODUCTION

This thesis is but a part of an ongoing research project to develop new sonar
signal processing algorithms capable of quickly and accurately solving target lo-
calization problems. Present technology and doctrine dictate that several lines of
bearing to a target be obtained before a sonar fire control solution ran be com-
puted. Obtaining these lines of bearing is a time consuming and often dangerous
task due to the increased probability of counterdetection and, as a result, evasive
maneuvering and defensive action on the part of the target. A sonar system ca-
pable of providing timely, accurate target localization while minimizing own ship
maneuvering would result in longer firing ranges and, therefore, a reduction of the
threat to one’s own ship.

Several recent papers [Refs. 1-3] have discussed the application of a complex
least-mean-square (LMS) adaptive algorithm [Ref. 4] to bearing estimation prob-
lems using a linear array of sensors. When a linear array is used, only a bearing
angle ¥, to the source can be estimated, an estimate of the depression angle 6, can-
not (Figure 1.1). While an estimate of the bearing angle is useful in the localization
problem, a better tool would be an algorithm which provides estimates of both the
bearing angle and the depression angle. A frequency domain adaptive beamform-
ing algorithm for planar arrays that solves multiple, broadband target localization
problems and provides estimates of both the bearing angles and the depression
angles from the center of the planar array to the targets has been developed and

initially tested by Ziomek and Chan [Ref. 5].
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The research performed in this thesis was to continue the work of Ziomek
and Chan [Refs. 5, 6] and fully evaluate the capabilities of the complex, least-
mean-square, frequency domain, adaptive beamforming algorithm they developed
via computer simulation studies. The computer simulation studies were designed
to test the algorithm’s multiple broadband target localization capability, its full
angular coverage capability, and its angular resolution as a function of the input
signal-to-noise ratio (SNR) at a single element in the array, sampling rate, harmonic
number, and the number of iterations of the algorithm.

Each target was modeled as a broadband sound source. As a result, the
frequency spectrum of the output signal from each element of the planar array
contains several frequency components. An estimate of the bearing and depression
angle for each frequency component is provided as a result of processing the output
frcquency spectrum from each element in the array through the frequency domain
adaptive beamforming algorithm. Therefore, if each target exhibits at least one
unique frequency component (or spectral line), then all targets can be located.

Full angular coverage is the ability to localize a target regardless of its relative
position to the array. The broadside case is the easiest since it is at this position
that the far-field beam pattern beamwidth is its narrowest. The endfire case is the
most difficult since the far-field beam pattern beamwidth is the broadest at this
point. The full angular coverage and multiple broadband target capabilities were
tested simultaneously.

Baseline results were the first assembled. Baseline results are defined as bear-
ing and depression angle estimation errors (measured in degrees) as a function of
sampling rate, harmonic number, and the number of iterations of the algorithm

for the “no noise” case. Identical cases were run using additive, zero mean, white,
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guassian noise to corrupt the output signals from each element of the planar ar-
ray. Average bearing and depression angle estimation errors were then plotted as
a function of the input SNR at a single element of the planar array, the sampling
rate, and the harmonic number.

Chapter II describes the theory used in the development of the frequency do-
main adaptive beamforming algorithm. The construction of the direction cosine
estimates, the angle estimates, and phase “unwrapping”, integral parts of the al-
gorithm, will be presented in detail.

Chapter III contains computer simulation results and an explanation of these
results. The results which are presented consist of graphical representations of
the average estimation errors of the bearing and depression angles at two distinct
signal-to-noise ratio levels for four cases. These cases include targets evaluated
at broadside, endfire, random placement, and targets which share a spectral line.
Conclusions concerning the effect of harmonic number, sampling rate, number of
iterations of the algorithm, and SNR are made. The Appendix contains tabular
numerical data for all results.

Chapter IV will present final conclusions and recommendations for further
research.

Results of this thesis research work have been incorporated into a research

paper by Ziomek and Behrle which was presented at the Twenty-First Annual

Asilomar Conference on Signals, Systems, and Computers [Ref. 7].
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II. THEORY

This chapter is designed to present a brief, yet comprehensive, development of
the frequency domain adaptive beamforming algorithm which is evaluated in this
thesis. The goal of the algorithm is to process the output electrical signals from
a planar array of sensors and provide estimates of direction (both bearing and
depression angles) and frequency content of the acoustic fields incident upon the
array. The development of the algorithm presented here is similar to the analysis
section of a paper by Ziomek and Behrle [Ref. 7], but this chapter provides a more
detailed explanation for several parts of the algorithm. A more in-depth analysis
of the algorithm is provided by Ziomek and Chan [Ref. 5] and Chan [Ref. 6.

The frequency domain adaptive beamforming algorithm is based on using the
complex frequency domain data R(g,m,n) from all M x N elements of a planar
array. The objective of the adaptive filter used in the algorithm is for the filter
to converge to a set of phase weights such that the array output signal will match
a refercnce signal. From this set of phase weights, estimates of the bearing and
depression angles as a function of the harmonic number ¢ can be made.

Consider a M x N planar array of point source elements lying in the XY
plane (Figure 2.1). These elements are equally spaced where d; and d, are the
interelement spacings in the X and Y directions, respectively, and M and N are
the total number (odd) of elements in the X and Y directions, respectively. The
random baseband output electrical signal, r(¢, m, n), is composed of a deterministic
signal, y(¢,m,n), and a random receiver noise component, n(¢,m,n). The output

signal at time instant £ and element (m, n) in the array is given by
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r(¢,m,n) = y(¢,m,n) + n({,m,n),L=-L',...,0,... L’

where
L'=(L-1)/2, (2.2)
M' =(M-1)/2, (2.3)
N'=(N-1)/2, (2.4)
and
L>2K+1 (2.5)

E
%
s
E
|
_E
@

is the total number of time samples that must be taken per element to avoid aliasing
when the deterministic signal y(¢,m,n) is composed of K harmonics [Ref. 8: p.
164]. The minimum value for L (i.e., L = 2K + 1) is obtained by sampling at
the Nyquist Rate. If T, seconds is the length of the data record (or fundamental
period) recorded at each element of the array, then the fundamental frequency (or

the FFT bin spacing) is given by

fo =1/T, Ha. (2.6)

Therefore, the highest frequency which can be contained within the deterministic

part of the received signal is

\ fmaz = Kfo Hz (2.7)

4 and the minimum sampling frequency of the received output electrical signal r(¢,m,n)
. is

: fs = L/T, Samples/sec (2.8)




where L must satisfy equation 2.5 [Ref. 8: p. 164].

To obtain the complex frequency domain samples of the received signal, the
discrete Fourier transform (DFT) with respect to the time index ¢ of equation (2.1)
is taken. This action yields

R(q,m,n) =Y(¢q,m,n) + N(¢,m,n),¢q=-L',...,0,..., L
m=-M,...,0,...,. M (2.9)

n=-N'...,0,...,N’
where the index ¢ represents the harmonic number.

I-fo

Consider a single general plane-wave field, ¢ (t + - ), propagating in the

+n direction, incident upon the planar array as shown in Figure 2.2. If i is a
unit vector, ¢(t) an arbitrary baseband function, and c the speed of sound in the
medium measured in meters per second, then the deterministic part of the output
electrical signal at time instant ¢ and element (m,n) in the array is given by [Ref.

8: p. 160]

(2.10)

- d
Y€ myn) =g (eTs 3 Yomdx + """dY)

c

where Ts is the sampling period in seconds, and uy and vy are dimensionless
direction cosines with respect to the X and Y axes, respectively.

Upon taking the DFT of equation 2.10, we obtain the corresponding frequency

spectrum given by [Ref. 8: pp. 162-166]
Y(¢q,m,n) = Le, exp(-?- J2rq fougmdx /c) exp(-I- Jj2rq fovondy /c) (2.11)

where ¢4, ¢ = =L',...,0,...,L' are the complex Fourier series coefficients that
can be used to represent the baseband function g(t) by a finite Fourier series with

K harmonics during the time interval |t| > Tp/2. The coefficients are given by

¢ =Y(q,0,0)/L, ¢=-L',...,0,...,L". (2.12)
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The dimensionless direction cosines, uy and vg, are given by

up = sinfy cos Py (2.13)

vo = sinfg sin Yy (2.14)

where 6y is the depression angle and ), is the bearing angle. These angles are not
known a priori.
If we consider multiple plane waves incident upon the planar array, equation

(2.10) can be generalized and the deterministic part of the output electrical signal

)

where gi(t), uok, and vox are the arbitrary baseband function and direction cosines

at time instant ¢ and element (m,n) is

uokmdx + vorndy
C

y(€3m7n) = ng (eTS 'T' (215)
k

associated with the kth sound source.

A brief description of the development of the frequency domain adaptive beam-
forming algorithm is presented next. The discussion that follows is based, in part,
on the material in Ref. 7.

Define the complex estimation error at harmonic ¢ as

e(q) = s(q) - 5(g)- (2.16)
The reference signal s(q) is defined as
1 M' N'
(9= T3rx sz_jM’ =ZN |R(g,m,n)|exp[+i£R(q,0,0)]  (217)
and
1 M’ N'
9=tw 2 2 damdan)R(gmn) (218)

m=—M'n=-N'

= cT(q)R(q)d(q)/(LMN)

10
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is the estimate of s(q), where c(q,m) and d(q,n) are the unit magnitude complex
weights in the X and Y directions, respectively, c¢(q) and d(g) are the M x 1 and
N x 1 complex weight vectors in the X and Y directions, respectively, which are

given by

c(q) = [e(q, =M"), ..., c(g,0),...,c(g, M")]T (2.19)

d(q) = [d(g,—=N"),...,d(q,0),...,d(g, N")]", (2.20)

and R(q) is the M x N complex data matrix given by

[R(q,-M',—~N') ... R(q,-M',0) ... R(q,—M',N")]
R(¢)=| R(¢,0,-N') ... R(g,0,0) ... R(¢O0N) |. (221
| R(¢,M',-N') ... R(¢,M'.0) ... R(g,M' N')

Now define the (M + N) x 1 complex weight vector w(q) as follows:

w(q) = E% . (2.22)

We can obtain the original weight vector in the X direction via

c(q) = A w(q) (2.23)

Ao L 1 0

2=IMxM  MxN (224)

isa M x (M + N) matrix, I is a M x M identity matrix, and 0 is a M x N null

matrix. Similarly, we can obtain the original weight vector in the Y direction via

d(q) = B w(q) (2.25)
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Y B=|, % | I (2.26
X B=INxM NxN (2.26)
R}
R
isa N x (M + N) matrix, 0 is a N X M null matrix, and I is a N x N identity
-
3
::: matrix as indicated.
s
.{‘\' Substituting equations (2.23) and (2.25) into equation (2.18) yields
7.'
o §(q) = w™(9)Z(q)w(q)/(LMN) (2.27)
A
;': where
b
Z(q) = ATR(q)B (2.28)
_.-_. isa (M +N)x(M+N) complex matrix. The complex weight vector that minimizes
»
K the mean-square error E{|e(q)|?} is given by [Ref. 5, Ref. 7]
o« wiy1(9) = wi(9) + 2miei(q) [2(a) + 27 (9)] wi(e),i =0,1,2,... (2.29)
R
Kx where
5 eila) = 5(a) — &i(a) (2:30)
e
A is the estimation error after the i*? iteration,
B
o 3:(a) = w¥ (9)Z(q)la)/(LMN) (2.31)
', is the estimate of s(q) after the i** iteration, and the step-size parameter y; is
K
given by
O
g'. pi=po= (03 +02)7",i=0,1,2,... (2.32)
I
e
::' where uo is a constant, and is equal to the inverse of the sum of the signal and
noise power, 03 and o2, respectively, at the center element of the array. After each
£y
:.: iteration of the algorithm, each component of the complex weight vector w;,(q)
::'. is normalized by its respective magnitude in order to maintain unit magnitude.
e,
e 12
D
.
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Once the complex weight vector, w;,1(g), converges to a steady-state value,
w,,(q), the steady-state complex weight vectors ¢,,(q) and d,,(q) can be obtained
from equations (2.23) and (2.25), respectively. The estimates of the depression and
bearing angles at harmonic ¢, 6o(q) and ¥o(q), respectively, are given by [Ref. 8:
p. 175]

8y(q) = sin™" [{[ao“(q)]2 + [fz#s(q)]z}l/z] 1 g #0 (2.33)

and

Yo(q) = tan™ [655(q)/0E5(q)], ¢ #0 (2.34)

where 4.5(q) and 5§5(g) represent estimates of the direction cosines obtained by
using a least-squares fit to the “unwrapped” steady-state phase weights 6%,(q,m)
and 6%,(q,n), respectively. In the absence of noise

g=-L',...,0,...L'

G:a(va) = iz"qfOUO(Q)de/c’ m=-M'....0,...M'

(2.35)

and

g=-L',...,0,... L'

:s(Qan) = iz""lfovo(‘I)ndY/C, =N'.....0 N!

(2.36)

It should be noted that if r(¢,m,n), y(¢,m,n), and n(¢,m,n) of equation
(2.1) are baseband complex envelopes, then g¢fo must be replaced by (f. + ¢fo) in
equations (2.35) and (2.36), where f. is the carrier frequency in hertz. In addition,
equations (2.33) and (2.34) must now be evaluated at ¢ = 0. Substitution of
equations (2.17) and (2.18) into equation (2.16) yields the following expression for
the steady-state estimation error

1 M' N’
@ = 3w 2 O IRGamn)l|exple CR(g,0,0)

m=-M'n=-N'

— exp {+[8% (g, m) + 8% (g,n) + LR(g, m, n)]} (2.37)
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R(q,m,n) = |R(q,m,n)|exp[+j LR(q,m,n)], (2.38)

Css(g,m) = a,4(g,m) exp[+jb5,(q, m)] = exp [+8%,(g,m)], (2.39)

and

ss(Qa n) = bas(qa n)exP[+]¢ (q’n)] = exp [+J¢ (Q7 )] (240)

where a,,(q, ) = 1 and b,s(g,n) = 1 are real, unit magnitude, amplitude weights
and 6% (¢,m) and ¢¥(q,n) are real, “wrapped”, phase weights.

To ensure obtaining the correct depression and bearing angle estimates, éo(q)
and z/;o(q), respectively, the steady-state phase weights need to be “unwrapped.”
The “unwrapped” steady-state phase weights can take on values outside the closed
interval [—, 7] and therefore ensures full angular coverage capability (i.e., 0 <
6o(q) < /2 and 0 < 9o(g) < 27). The use of “wrapped” phase weights is necessi-
tated by computer programming limitations.

The question now arises how to obtain the “unwrapped” steady-state phase
weights in order to obtain least-squares estimates of the direction cosines at each
harmonic. The first step is to force the “wrapped” steady-state phase weights,

6¥,(g,m) and ¢},(q,n), to be equal to zero at the center of the planar array (i.e.,
m = 0,n = 0). This is accomplished by multiplying each component of ¢,,(q)
and d,,(g) (equations (2.19) and (2.20)) by exp[—76%(¢,0)] and exp[—jé%(g,0)],
respectively.

The next step is to obtain rough estimates of the direction cosines, uo(gq) and

vo(gq). The “wrapped” steady-state phase weight, §¥,(g,m), can be expressed as

14
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i=0,+1,42,...
6%.(q,m) = £ [2rqfouo(q)md, /c] + 2im, ¢=-L',...,0,...,L' (2.41)

m=—M',...,0,...,;M’

where 7 is chosen to ensure that the value of 8%,(q, m) is within the interval [—, 7}.

In the computer simulations presented in this thesis, the interelement spacing is
d: =dy = Amin/2 (2.42)
where the minimum wavelength is
Amin = ¢/ fmaz (2.43)

and

fmaz = L' f, Hz. (2.44)
Substituting equations (2.43) and (2.44) into equation (2.42) yields
d; =dy =c/(2L'f,) (2.45)

where L' is defined by equation (2.2) and f, is defined by equation (2.6). Substi-

tuting equation (2.45) into equation (2.41) yields

:=0,%1,£2,...

6% (g,m) =~ £(q/L Ymu,(g)7 + 2ix, m=-M',...,0,...,. M (2.46)

. w w
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.' By letting : = 0 in equation (2.46), the following rough estimate of direction cosine N
J U, at harmonic ¢ and element m is obtained: .
¥
3 Bo(qym) = £—2—8%(q,m), ¢ #0, m==1 (2.47) :
:: o q, - qm"r s q! b q ) - . . :
. ‘
.:: For purposes of this thesis, the rough estimates of u,(q) used were obtained by 2
averaging the results obtained by evaluating equation (2.47) at elements m = +1,
. that is,
; 0(g) = 0.5 [@0(g, 1) + do(g,=1)}, g #O. (2.48) -
) The most difficult case for the algorithm is to locate the highest harmonic, \
"
that is, ¢ = £ L', when it exists at endfire (6, = 90°) relative to the planar array. \
A
Let us assume that the value of the direction cosine at the highest harmonic is
equal to one. Therefore, if ¢ = +L', equation (2.46) reduces to
1} .;
w Tt _ . 1=0,%+1,::2,... o g
6y (L',m) = mnr + 2im, m=—M,...0,.. . M (2.49) A
A Evaluating this relationship at element m = %1 to obtain the rough estimate of ‘
: uo(g) yields
: 6% (L', £1) = £7 + 2im, t=0,%1,£2,..., (2.50)
i 't
and since the “wrapped” steady-state value must be in the interval [, 7], ¢ must :
‘, be equal to zero. Equation (2.50) is reduced to ]
. 6u (L', +1) = £ (2.51)
5 y
If the plus sign is chosen in equation (2.47), and m = +1 and ¢ = L/, then .
3 evaluation of equation (2.47) yields :
' L
2 do(L',£1) = 8%(L', £1)/ £ =). (2.52) "
]
! 16 ™
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[
: Upon substituting equation (2.51) into equation (2.52) we obtain
’,
' io(L', 1) =1 (2.53)
L which is the expected result in the absence of noise since the assumption was made
?

that the value of the direction cosine was equal to one at the highest harmonic.
‘ Evaluating equation (2.49) at a different element (i.e., m # 1) would yield 1 # 0
‘_ and, as a result, an incorrect rough estimate of uo(L') = 1. This validates the
- use of elements m = %1 to obtain the estimate of the direction cosines (equation
‘. (2.47)).
D)
". The third step is to generate rough estimates of the “unwrapped” steady-
. ~

state phase weights, 85,(¢,m), by replacing u,(q) in equation (2.46) with ii,(q)
. from equation (2.48), that is
3 ! !

. . g=-L',...,0,...,L

:n 6,,(g,m) = £(g/L")mi,(q)m, mo= M. 0. M (2.54)

Therefore, if

1=1,3,5, >

) .
| i < é';,(q,m)‘ <G+, ¢=-L',...,0,....L' (2.55)
" m=-M,,. ,0, ,MI i

then .
’ i=1,3,5,.. :
G4 -
v hY
J -

64,(q,m) = % (q,m) + sgn [84,(q,m)| i+ V7, g=~L',....0,...,L'(2.56)

m=-M,...,0,...,.M

! 17
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where sgn[ ] is the sign function. Note that the right-hand side of equation (2.56)
is simply the noise corrupted version of the right-hand side of equation (2.35).
The method of least-squares is then used to fit a straight line to the unwrapped
phase weights 63,(q, m) as a function of element number m for each harmonic q. The
phase weights 67,(¢q, m) were computed using equation (2.56). The least-squares
slope at harmonic ¢ is given by
M M’
sis(g)= ). mby(g,m)/ Y. mi. (2.57)
m=—M'

m=-M;

Substituting equation (2.45) into equation (2.35) yields

g=-L',...,0,..., L'

foolam) = o/ Lymuoldme - _ap o e 299)
in the absence of noise. Therefore, since in the presence of noise
n ; g=-L',...,0,..., L'
e ~ .
si(em) = 3rs(q)m + brs(a) ~ _ ol (2.59)
where
. 1 M
bis(e) =37 D O5s(em) (2.60)
m=—M'

is the least-squares “y intercept” at harmonic ¢, comparing equations (2.58) and

(2.59) yields

+al5(q) = [L'/(qm)) SLs(q), ¢ #0 (2.61)

which is the least-squares estimate of direction cosine u, at harmonic q.
In a similar derivation, it can be shown that the least-squares estimate of the

direction cosine v,(g¢) at harmonic q is given by

+055(q) = [L'/(gm)] 3s(q), ¢ #0 (2.62)

18
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where now
N’ N’
ses(e)= Y. néh(gn)/ Y, o’ (2.63)
n=-~N' n=—-N'
and, if
t=1,3,5
ir < |8%(q,n)| < (i +2)r, ¢=-L',...,0,..., L' (2.64)
n=-N'....,0,...,N'
then

1 =1,3,95,...
5 (q.n) = 6% (a,m) +s9n [$4,(g,m)| G+ 1w, g==L'\...,0,... L'(265)

n=-N',...,0,...,N'

where
1,(a.m) = o/ Eymiulaym, 12 000 (200
9o(q) = 0.5[%0(g, 1) +0o(q, 1), ¢ #0 (2.67)
and
vo(g,n) = :i:—é—-tﬁ vig,n), ¢#0, n==L (2.68)

Using the least-squares estimates of the direction cosines 4LS(q) and 5L5(q),
that is, equations (2.61) and (2.62), respectively, yield estimates of the depression

and bearing angles, §,(¢) and ¥,(q), respectively, using equations (2.33) and (2.34).
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III. RESULTS

Significant computer simulation results from four unique test cases are pre-
sented in this chapter. The test cases were designed to test the algorithm’s multiple
broadband target localization capability, its full angular coverage capability, and
its angular resolution as a function of the input SNR at a single element in the
array, sampling rate, harmonic number, and the number of iterations.

The test cases were comprised of the following:

(1) Case 1 - a single broadband target located at broadside relative to the planar
array;

(2) Case 2 - three broadband targets located at random positions;

(3) Case 3 - a single broadband target located at endfire relative to the planar
array; and

(4) Case 4 - three broadband targets, two of which share a common harmonic.

The simulation results of these four test cases are based upon processing the
output electrical signals from a 7 x 7 planar array of equally spaced hydrophones.
The acoustic field incident upon the planar array was, in general, the sum of several
plane-wave fields travelling in different directions. Each plane-wave field consisted
of an arbitrary number of harmonics (spectral lines) emanating from one of the
broadband sound sources. As a result, the output electrical signal at each element
of the planar array was composed of an arbitrary number K of harmonics, all with
identical amplitudes of unity.

The fundamental frequency for all test cases was chosen to be f, = 1000
Hz. Via equation (2.6), the fundamental period at each element of the array was

1 millisecond. The sampling parameter, S, was set equal to 2, 4, and 6, which
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corresponded to a sampling frequency equal to the Nyquist Rate, twice the Nyquist ¢
Rate, and three times the Nyquist Rate, respectively. The number of time samples f
taken per element of the array is given by "
‘l
L=SK+1 (3.1) g

where L is the total number of samples taken per element, K is the total number
of harmonics present in the signal, and S is the sampling parameter. (
Baseline, or “no noise” test case results, were the first generated to ensure that N
the algorithm was working properly in a noise-free environment. Figure 3.1 depicts ':
the noise free, time domain, received signal for case 2. For each baseline test case, l
and for a given value of the sampling parameter, bearing and depression angle '
estimation errors (measured in degrees) were obtained by running the computer )
simulation once and allowing the modified complex LMS algorithm 100 iterations. ﬁ
Case 1 baseline test case results showed zero degree estimation errors whereas case ':_:
2 and case 3 baseline results showed estimation errors of less than 0.1 degrees. Case )
4 baseline results will be discussed later in this chapter. ) :
Following compilation of the baseline results, identical test cases were run :

using additive, wide-sense stationary, zero mean, white, guassian noise samples to
corrupt the time samples of the received signal. Figure 3.2 depicts the time domain, ;

received signal for case 2 for a SNR = 0 dB. For each test case, and for a given
value of the sampling parameter and input SNR at a single element of the array,
average bearing and depression angle estimation errors were obtained by running
the computer simulation 100 times per SN R value and allowing the complex LMS
algorithm 100 iterations per run. In all test cases, allowing the adaptive algorithm

more than 100 iterations did not decrease the estimation errors.

L)
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0.0
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i

1 =

-4.0

REAL RECEIVED SIGNAL AT ELEMENT (1,1}

-6.0

-8.0
i

-10.0
1

-12.0

| i 1 1 1

L I i
-12.0 -9.0 -6.0 -3.0 0.0 3.0 6.0 9.0 12.0
TIME INSTANT L

Figure 3.1. Real Received Signal at Element (1,1), for Case 2 with No
Noise Present.
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Figure 3.2. Real Received Signal at Element (1,1) for Case 2 for SNR=0
dB.
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Case 1 placed a single target at broadside relative to the planar array ( i.e.,
6, = 0°). This was considered the simplest case for the algorithm since it is
at broadside that the far-field beam pattern has its narrowest beamwidth and,
as a result, the algorithm should provide good angular resolution [Ref. 8: pp.
62-66]. The general plane-wave field radiated by the target consisted of K = 6
harmonics. Therefore, with K = 6 and S = 2,4, and 6, only L = 13, 25, and 37
time samples, respectively, were taken per element in the array (equation (3.1)).
Figure 3.3 presents the average estimation error of the depression angle versus the
sampling parameter S for the 0 dB SN R case. It can be seen that as the value of
S increases for a given harmonic, the magnitude of the estimation error decreases.
If S is held constant, it can be seen that as the harmonic number (g¢) increases, the
magnitude of the estimation error decreases. These two trends were expected. As
the value of S increases, more time samples are being processed and, as a result,
the noise component of the received signal should tend to average out to be zero.
Since more data is available for evaluation, a better estimate of the deterministic
signal results. An increase in the harmonic number, ¢, represents an increase in the
frequency and, as a result, the beamwidth of the far-field beam pattern decreases
[Ref. 8: pp. 58-62]. The decreased beamwidth increases the angular resolution of
the algorithm and, as a result, decreases the estimation error.

Figure 3.4 presents the results for case 1 at 9 dB SNR. The trends which
were present in the 0 dB case are again apparent here. It also should be noted
that as the SNR value increases (i.e., from 0 dB to 9 dB), the magnitude of the
estimation error decreases.

Results for bearing angle estimation error in the broadside case are irrelevant

since the target is directly above the array, and the bearing angle has no meaning.
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Figure 3.4. Average Depression Angle Estimation Error vs Sampling
Parameter S, Case 1: SNR=9dB. I=100. )
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Case 2 placed three broadband targets at random locations. The general plane-
wave field radiated by each of the targets contained two unique harmonics. Target
1 was located at (0, = 49°,¢, = 38°) and radiated harmonics 1 and 6. Target
2 was located at (8, = 5,¥, = 137°) and radiated harmonics 2 and 5. Target
3 was located at (4, = 77°,¢, = 307°) and radiated harmonics 3 and 4. Since
there are three incident plane-wave fields each containing two unique harmonics,
the output electrical signal from each element in the array exhibits a total of K = 6
harmonics. As before, equation (3.1) dictates that only L = 13,25, and 37 time
samples are to be taken per element of the array when S = 2,4, and 6, respectively.
Figure 3.5 presents case 2 results for the depression angle estimation error with a
0 dB SNR. In general, as S increases, the estimation error decreases for a given
harmonic. When comparing the harmonics associated with a particular target,
the highest harmonic usually is associated with the lessor of the estimation errors.
These general results can be explained using the same arguments presented for case
1.

Figure 3.6 presents the case 2 bearing angle estimation errors for 0 dB SNR.
Figures 3.7 and 3.8 present the case 2 estimation errors for the depression and
bearing angle, respectively, for 9 dB SNR. The same general trends already in-
troduced are apparent in Figures 3.5 through 3.8. As in case 1, as the SN R value
increased, the magnitude of the estimation errors decreased.

Case 3 placed a single broadband target at endfire relative to the planar array
(6, = 90°,%, = 90°). This case was considered the most difficult for the algorithm
since it is at endfire that the far-field beam pattern beamwidth is its broadest [Ref.
8: pp. 62-66]. The general plane-wave field radiated by the target consisted of ¢ = 5
harmonics. Therefore, with S = 2,4, and 6, only L = 11,21, and 31 time samples

were taken, respectively, at each element of the array (equation (3.1)). Figures
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Figure 3.5. Average Depression Angle Estimation Error vs Sampling

Parameter S, Case 2: SNR=0Db. I=100.
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Figure 8.7. Average Depression Angle Estimation Error vs Sampling
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Figure 3.8. Average Bearing Angle Estimation Error vs Sampling Pa-
rameter §, Case 2: SNR=9dB I=100.
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3.9 and 3.10 illustrate the average depression and bearing angle estimation errors,
respectively, for 0 dB SNR. Figures 3.11 and 3.12 illustrate the same information
for 9 dB SNR. The estimation errors for the highest harmonic (¢ = 5) are not
shown for any of the case 3 results since the magnitude of these errors was between
70 and 90 degrees. This poor performance for the highest harmonic at endfire can
be explained theoretically (see Chapter 2 - phase unwrapping).

Case 4 corresponded to three broadband targets being present. The general
plane-wave field radiated by each target was composed of two harmonics. In this
case, two of the targets shared a common spectral line, namely, the fundamental
frequency (¢ = 1). Target 1 was located at (8, = 45°,%, = 0°) and radiated
harmonics 1 and 2. Target 2 was located at (8, = 45°,%, = 180°) and radiated
harmonics 1 and 5. Target 3 was located at (6, = 33°,¢, = 47°) and radiated
harmonics 3 and 4. A total of K = 5 harmonics were present in the output
electrical signals, and, with S = 2,4, and 6; only L = 11,21, and 31 time samples,
respectively, were taken at each element of the array (equation (3.1)). For this
case, only no noise results were compiled, with the computer simulation running
once and the complex LMS adaptive algorithm allowed 100 iterations.

For harmonics ¢ = 2,3,4, and 5 contained in the output electrical signal,
the algorithm correctly identified the location of the targets with zero degrees
estimation error. However, for the shared harmonic (¢ = 1), the algorithm located
a false fourth target, which was located exactly between the actual locations of the
targets whose radiated general plane-wave fields contained the shared harmonic,

namely, targets 1 and 2.

Tabular numerical data for test cases 1 through 4 is contained in The Ap-

pendix.
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Figure 3.9. Average Depression Angle Estimation Error vs Sampling
Parameter S, Case 3: SNR=0dB I =100.
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test case 2 because it was felt that this case presented the most realistic real world
situation. First, a minimum number of iterations for the algorithm to produce the
same results as presented in this chapter (when 100 iterations of the algorithm was
allowed) was found. The minimum number was found tc be 10 iterations. Using
this information, the step size parameter, u, (which had been a constant) was
varied using a step function. For the first 10 iterations of the algorithm, u was held
constant. This allowed the algorithm to reach its minimum value with a constant
u. The value for 4 was then stepped down to one-tenth its original value for an
additional 90 iterations. No decrease in estimation error resulted. The parameter
was then stepped down to one one-hundredth, and then one one-thousandth, of
its original value, with no change in the estimation error resulting. Additional

attempts to model the step size parameter as a decreasing exponential yielded no

E
i change in the estimation error.
i
]
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IV. CONCLUSIONS AND RECOMMENDATIONS

The goal of this thesis was to evaluate a frequency domain adaptive beamform-
ing algorithm which was developed by Ziomek and Chan [Ref. 5|. The multiple
broadband target localization capability and the full angular coverage capability
of the algorithm were of particular interest.

Chapter 3 presented the results of four test cases which were designed to
test the algorithm for several different capabilities. Several conclusions concerning
the performance of the frequency domain adaptive beamforming algorithm can be
drawn from these results. Among these conclusions is the fact that the algorithm
performs well in all test cases, yielding what would be considered acceptable esti-
mation errors for the target localization problem. It should also be noted here that
the number of time samples taken per element of the array never exceeded 37 time
samples, an amount which represents a small number of data points.

The algorithm does exhibit multiple broadband target localization capability.
The test case results show that multiple targets can be localized if their radiated
acoustic plane-wave fields contain at least one unique spectral line. The separation
distance of the spectral lines can be controlled by selecting an appropriate value for
the FFT bin spacing. The algorithm has also demonstrated its ability to localize
targets both at endfire and broadside positions relative to the planar array, thus
demonstrating the algorithm’s full angular coverage capability.

Several general trends were apparent in the results. The first of these trends is
that as the sampling parameter S increased, the magnitude of the estimation error
decreased. This was due to a corresponding increase in the amount of time samples

being processed. The second trend observed was that as the harmonic number ¢
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increased, the magnitude of the estimation error, in general, decreased. This trend
b can be explained by the fact that as the harmonic number ¢ increases (equivalent to
an increase in the frequency), the far-field beam pattern beamwidth decreases which
]
N results in better angular resolution. The third trend observed was that as the SN R
)/
) - increased (the output electrical signal becoming less noisy), the magnitude of the
)
estimation error decreased. It was also found that the estimation errors presented
N . . . . . :
N in this thesis are obtainable after ten iterations of the adaptive algorithm, and an
K
2 increase in the number of iterations did not decrease the estimation error.
. In the course of this investigation, several possible areas for future research
W
2: presented themselves:
&
‘.: o further study of the effects of varying the step-size parameter, y, in an attempt
o to decrease the magnitude of the estimation error,
¥
b ¢ investigation of a noise reduction system prior to processing the output elec-
A trical signals, and
' e application of other spectral analysis techniques (i.e., autoregressive, maxi-
. mum entropy, maximum likelihood, etc.) to produce frequency spectra.
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APPENDIX

The Appendix presents the tabular numerical data from which the graphical
results of Chapter 3 were produced. The numerical data for the graphical results
of Figures 3.3 through 3.12 is presented in Tables A.1 through A.10, respectively.
Tables A.11 and A.12 presents the numerical data for Case 4. There is no corre-

sponding graphical result for Case 4.

TABLE A.1. NUMERICAL DATA CORRESPONDING TO FIGURE 3.3.

Case 1: One target located at broadside relative to planar
array, six harmonics present in output electrical signal;
Sampling parameter S = 2, 4, and 6; 100 iterations; SNR = 0dB
HARMONIC  LOCATION DEPRESSION ANGLE 6,
6, ¥, ESTIMATION ERROR (DEG)
q (DEG) (DEG) S=2 S=4 S=6
! 0 270 -7.388 -4732 -4124
2 0 270 -3.287 -2760 -1.975
3 0 270 -2542 -1654 -1374
4 0 270 -2506 -1.223 -1.099
5 0 270 -1.312 -0962 -0.784
6 0 270 -1.086 -0.892 -0.660
40
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TABLE A.2. NUMERICAL DATA CORRESPONDING TO FIGURE 3.4.

Case 1: One target located at broadside relative to planar
array, six harmonics present in output electrical signal,
Sampling parameter S = 2, 4, and 6; 100 iterations; SNR = 9dB

HARMONIC LOCATION DEPRESSION ANGLE 6,
5, b, ESTIMATION ERROR (DEG)
q (DEG) (DEG) S=2 S=4 S5=6
1 0 270 -2.312 -1796 -1.456
2 0 270 -1.191 -0.940 -0.686
3 0 270 -0.769 -0.582 -0.449
4 0 270 -0.594 -0446 -0.365
S 0 270 -0.479 -0326 -0.267
6 0 270 -0.410 -0316 -0.214

TABLE A.3. NUMERICAL DATA CORRESPONDING TO FIGURE 3.5.

Case 2. Multiple targets located at random positions;
six harmonics present in output electrical signal,;
Sampling parameter S = 2, 4, and 6; 100 iterations; SNR = OdB

HARMONIC LOCATION DEPRESSION ANGLE &,
6, v, ESTIMATION ERROR (DEG)

q (DEG) (DEG) S=2 S=4 S=6
! 49 38 -2.789 -0.708 -0.285
2 S 137 -0686 -0450 -0.522
3 77 307 +7.138 +3601 +1.075
4 77 307 +1.818 +1.085 -0.521
S S 137 -0.599 -0.164 -0.010
6 49 38 -2.452 -2752 -0.383
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) TABLE A.4. NUMERICAL DATA CORRESPONDING TO FIGURE 3.6.
n Case z: Multiple targets located at random positions;
six harmonics present in output electrical signal;
! Sampling parameter S = 2, 4, and 6; 100 iterations; SNR = 0dB
)
:: HARMONIC LOCATION BEARING ANGLE 4,
6, b, ESTIMATION ERROR (DEG)

,': q (DEG) (DEG) S=2 S=4 S=6
: ! 49 38 -0.261 +0.236 +0.001
& 2 S 137 +0.270 -0.043 -1.337

3 77 307 +43.268 +27.662 +14599
¥ 4 77 307 +9.620 +3.789 +1.100
! S 5 137 +0.168 +1.122 +0.702
" 6 49 38 -0.420 -3.220 +0.907
' TABLE A.5. NUMERICAL DATA CORRESPONDING TO FIGURE 3.7.
N
?: Case 2: Multiple targets located at random positions;
‘ Six harmonics present in output electrical signal;

Sampling parameter S = 2, 4, and 6; 100 iterations; SNR = 9dB

i HARMONIC LOCATION DEPRESSICN ANGLE 6,
. 6, ¥, ESTIMATION ERROR (DEG)
,‘ qQ (DEG) (DEG) 5=2 =4 S5=6
N

! 49 38 -0.338 -0.113 -0080
e 2 S 137 -0.053 -0.073 -0.050
K 3 77 307 ~0.425 +0.280 -0.192
Y 4 77 307 +1.383 +0372 +1.350
: 5 5 137 +0.017 -0.013 -0.003
‘ 6 49 38 -0.447 +0.058 +0.022
[}
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TABLE A.6. NUMERICAL DATA CORRESPONDING TO FIGURE 3.8.

Case 2. Multiple targets located at random positions,
six harmonics present in output electrical signal;
Sampling parameter S = 2, 4, and 6; 100 iterations; SNR = 9dB
HARMONIC LOCATION BEARING ANCLE 4,
6, U, ESTIMATION ERROR (DEG)

q (DEG) (DEG) S=2 S=4 S=6
! 49 38 +0.235 +0.048 -0.145
2 5 137 +1.288 +0.263 +0.725
3 77 307 -0.346 +0.037 -0.036
4 77 307 -1.221 -0.676 -1.298
5 5 137 +0.648 -0.148 -0.538
6 49 38 +0.058 +0.112 +0.105

TABLE A.7. NUMERICAL DATA CORRESPONDING TO FIGURE 3.9.

¢
Case 3. One target located at endfire relative to planar array, :
five harmonics present in output electrical signal; ‘
Sampling parameter S = 2, 4, and 6; 100 iterations; SNR = 0dB
HARMONIC LOCATION DEPRESSIGN ANGLE 6, )
6, ¥, ESTIMATION ERROR (DEG)
q (DEG) (DEG) S=2 S=4 S=6 .
! 90 90 +7.308 +7511 +7.339
2 90 90 +16.978 +15.058 +8.046
3 90 90 +7584 +6.119 +4723
4 90 90 +13.749 +7.554 +2926
S 90 90 +72572 +68.769 +70.8351 ;
T T Ayt LA R UGN RDEH LI LR X GG j
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TABLE A.8. NUMERICAL DATA CORRESPONDING TO FIGURE 3.10.

Case 3. One target located at endfire relative to planar array;
five harmonics present in output electrical signal;
Sampling parameter S = 2, 4, and 6; 100 iterations; SNR = 0dB

| HARMONIC LOCATION BEARING ANGLE 4,

&, ¥, ESTIMATION ERROR (DEG)
q (DEG) (DEG) S=2 S5=4 S=6
1 90 90 -0547 -0372 +0.213
2 S0 30 -19.202 -18.163 -7.252
3 90 S0 +0.168 -0.038 -0.094
4 g0 90 -3.171  -0.715  -0.041
5 90 90 -69.481 -89.808 -88.562

TABLE A.9. NUMERICAL DATA CORRESPONDING TO FIGURE 3.11

Case 3: One target located at endfire relative to planar array;
five harmonics present in output electrical signal;
Sampling parameter S =2, 4, and 6; 100 iterations; SNR = 9dB

HARMONIC  LOCATION DEPRESSION ANGLE 6,
6, ESTIMATION ERROR (DEG)
q (DEG) (DEG) S=2 S=4 S=6
| 90 90 +5.301 +4994 +4677
2 90 90 +3523 +3.175 +2.932
3 90 90 +3.744 +2.827 +2.701
4 90 90 +2.483 +2592 +2.265
5 90 90 +68938 +66.092 +70.858
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TABLE A.10. NUMERICAL DATA CORRESPONDING TO FIGURE 3.12.

Case 3: One target located at endfire relative to planar array,
five harmonics present in output electrical signal;
Sampling parameter S =2, 4, and 6; 100 iterations; SNR = 9dB

HARMONIC LOCATION BEARING ANGLE

B, ¥, E=TIMATION ERROR (DEG)
q (DEG) (DEG) S=2 S=4 S5=6
1 eC 90 +0.333 +0.097 -0.105
2 30 90 -0.030 -0.123 +0.088
3 90 S0 -0.080 -0045 +0019
4 90 90 +0.039 +0.009 -0.02!
S 90 90 -108.012 -90.250 -93.038

TABLE A.11. NUMERICAL DATA FOR DEPRESSION ANGLE ESTIMATION
ERRORS FOR CASE 4.

Case 4 Multiple targets; targets one and two share a common
spectral line; five harmonics present in output electrical signal,
Sampling parameter S =2, 4, and 6; 100 iterations; no noise
HARMONIC LOCATION DEPRESSION ANGLE 6,
6, v, ESTIMATION ERROR (DEG)

q (DEG) (DEG) S=2 S=4 S5=6

1 45 0 +19.683 +19.683 +19.683

2 45 0 0.0 0.0 0.0

1 45 180 +19.683 +19.683 +19.683

S 45 180 0.0 0.0 0.0

3 33 47 0.0 0.0 0.0

4 33 47 0.0 0.0 00

45

AV T L 0 P B N A L T S A S O SN

»
,
¢
»
Id
¢’
bt




et NTRT 3 " ST ATV O A W Wy, Wt T T et
SECR Ao b et A S R Ul i S et S R O RV TV DV I W ALY U VUV AU T AT am ARV Ty e Ve e

—— L 4

Lo o e o S

TABLE A.12. NUMERICAL DATA FOR BEARING ANGLE ESTIMATION
ERRORS FOR CASE 4.

Case 4 Multiple targets; targets one and two share a common

spectral line; five harmonics present in output electrical signal;
Sampling parameter S = 2, 4, and 6; 100 iterations; no noise

HARMONIC LOCATION

BEARING ANGLE 1y,

S, ¥, ESTIMATION ERROR (DEG)
q (DEG) (DEG) S=2 S=4 S5=6
1 45 0 -180.00 -180.00 -180.00
2 45 0 0.0 0.0 0.0
1 45 180 0.0 0.0 0.0
) 45 180 0.0 0.0 0.0
3 33 47 0.0 0.0 0.0
4 33 47 0.0 0.0 0.0
a
4
&
8
-
S AT AT el T TR T e R e T R R AT AT R L B T AN A A AL gL AT S B




™

”
")

- "

LIST OF REFERENCES

. Reed, F. A, Feintuch, P. L., and Bershad, N. J., “Time Delay Estimation us-

ing the LMS Adaptive Filter-Static Behavior,” IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-29, pp. 561-570, June 1981.

. Reed, F. A., Feintuch, P. L., and Bershad, N. J., “Time Delay Estimation

using the LMS Adaptive Filter-Dynamic Behavior,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-29, pp. 571-576, June 1981.

. Reed, F. A., Feintuch, P. L., and Bershad, N. J., “The Application of the

Frequency Domain LMS Adaptive Filter to Split Array Bearing Estimation
with a Sinusoidal Signal,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-33, pp. 61-69, February 1985.

. Widrow, B., McCool, J., Ball, M., “The Complex LMS Algorithm,” Proc.

IEEE, vol. 63, pp. 719-720, April 1975.

. Ziomek, L. J. and Chan, F., “Frequency Domain Adaptive Beamforming for

Planar Arrays,” Conference Record Twentieth Asilomar Conference on Sig-
nals, Systems, and Computers, pp. 120-124, Pacific Grove, California, 10-12
November 1986.

. Chan, F., Two-dimensional Beamforming Using a Frequency Domain Complez

Least Mean-Squares (LMS) Adaptive Filter, Master’s and Electrical Engineer
Thesis, Naval Postgraduate School, Monterey, California, June 1986.

. Ziomek, L. J. and Behrle, C. D., Localization of Multiple Broadband Targets

Via Frequency Domain Adaptive Beamforming for Planar Arrays, paper pre-
sented at the Twenty-First Annual Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, California, 2-4 November 1987, in print.

. Ziomek, L. J., Underwater Acoustics - A Linear Systems Theory Approach,

Academic Press, Inc., 1985.

47

Wy LT
& Y. 4

P
W
A
.«
b

I PP, PR ALLL

AL LA

a s

RRNARANIY.

Col K FFLALA A RSN

‘J

A

; * - 2 Ny - IR - -
I AL AT LA AR T T AT TR T A A T T e e e AT e A AT AT A AT s o SO ENLLASEIRN A R R O
. NalRas 5 . A B ., - Y . N L » N



Pl ety 2

Y

g

v ~ TR T e 7 A deds Wy PP YT T OO Ty g
AUV Xu ¥ a % ¥ * Y TH FHN "] M So 000 5a ah f5ou0at at oia* et A e it giytgh L LN Ye¥a AT o LA

No. Copies
INITIAL DISTRIBUTION LIST

e >

1. Defense Technical Information Center 2 3
Cameron Station
Alexandria, VA 22304-6145 h

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Professor J. P. Powers, Code 62Po 1
Department of Electrical & Computer Engineering y
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor L. J. Ziomek, Code 62Zm 3
Department of Electrical & Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor M. Tummala, Code 62Tm 1 :
Department of Electrical & Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

6. LT C. D. Behrle, USN 2 5
Supervisor of Shipbuilding {
Conversion and Repair, USN '
495 Summer Street
Boston, MA 02210-2181

7. Chief of Naval Operations 1
Code OP-02 Navy Department
Washington, D.C. 20350

48

oy - ~ ‘- - . e LA S s . .'. Lt e SVt '.-.', - PRSI Y
N_A( :‘f._f:f*‘"f Jf NW " -J’-_fn.' PR A.’;.."L ‘_..A_,).fh:fh e alan a A ;\. A., RIS, IS A A e Tt T




-

FE TS

on e

pip U0 RR (R SNV

A S s ix iy e !

h Yo S

CARN

4

%
{
3

“ay. -" I R TR RN R Nm s

8.

Dr. Duncan Sheldon (Surface Sonar)
NUSC

Code 3314

New London, CT 06320

L ™ =g




OO UM DN AN Ko ¥ N S M 20 W An X ¥ M O O M RN R RS AT R N = oy R N T R

; R
. L L

{11
<
»

™
—
[

ey T e

- o
s o

K
N
)
\
b
W

l
2 =
=
SN
SN

galatall S rrCla ity

A A A T o A T R A T T A



